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Dynamics of helix deformation in a chiral smectic-C* liquid crystal:
Optical experiments and modeling
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Measurements are reported for the optical response in the classical electroclinic geometry of a chiral
smectic-C * liquid crystal. The sample was subjected to a weak ac electric field that was applied perpen-
dicular to the helical axis. The response was found to be linear in field for E much smaller than the criti-
cal field for complete unwinding, and nearly independent of sample thickness, falling off approximately
as f~! in the frequency range 200 < f <20000 Hz. The behavior is modeled by a time-dependent
Landau-Ginzburg model in which both the local polarization and dielectric anisotropy are coupled to

the electric field.

PACS number(s): 61.30.—v

Over the past few years considerable attention has been
paid to both the similarities and differences between the
ferroelectric (chiral Sm-C*) liquid-crystal phase [1] and
the antiferroelectric (chiral Sm-C%) phase [2,3]. In both
phases chiral molecules tilt by an angle 8 with respect to
the smectic layer normal, such that a local polarization
perpendicular to the molecule and in the plane of the lay-
er is obtained. In the ferroelectric phase the azimuthal
angle @ is everywhere the same, and the net polarization
(P) is therefore maximum; in the antiferroelectric phase
the azimuthal orientation ¢ differs by approximately 180°
in successive layers, and thus (P ) vanishes. One conse-
quence of this layer-by-layer azimuthal alternation is the
possibility of field- and temperature-driven ferrielectric
phases in an antiferroelectric material [3—-8]. (In these
ferrielectric phases the number of smectic layers for
which @=0 is different from the number of layers for
which ¢ =180°). Another characteristic of materials that
exhibit ferroelectricity and/or antiferroelectricity is that,
owing to the absence of inversion symmetry, the azimu-
thal orientation @ in the ferroelectric phase necessarily
exhibits a long-wavelength macroscopic helix perpendic-
ular to the smectic layer planes [1,9]; for the antifer-
roelectric phase a pair of helices, displaced relative to
each other by one smectic layer, obtains.

One objective of our ongoing investigations of chiral
smectic liquid crystals is to characterize the dynamics of
the field-driven ferrielectric phases and their transitions.
At low fields the antiferroelectric helix pair is deformed
and, for larger fields, ultimately unwound. (Analogous
phenomena—the ‘“deformed helix effect” —are also well
known for both cholesteric and ferroelectric phases
[1,10-20]). At still higher fields ferrielectric phase(s) may
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be observed, ultimately leading to a field-induced fer-
roelectric phase at a sufficiently large field [3,6,21]. To
better understand this sequence of events as a function of
frequency we have first investigated the initial process of
helix deformation in the less complex ferroelectric ma-
terial. Two related goals of this study were to measure
the electro-optic response of a high-quality material and
to accurately model its behavior using an appropriate free
energy. Although experimental results exist for one of
the early ferroelectric materials [15], the data are not
consistent with our modeling, perhaps due to spurious
effects such as ionic motion. In this paper we report on a
linear electro-optic effect associated with small electric
field-induced deformations of the ferroelectric helix. We
investigated the dynamics of this effect over a frequency
range 200 < f <20000 Hz, finding that the response ap-
proximately obeys a power law. Additionally, we have
modeled the dynamics of this effect using a time-
dependent Landau-Ginzburg model that involves cou-
plings of both the polarization and dielectric anisotropy
to the external field [22]. Very good agreement was
found with the experimental results, encouraging the use
of a modified form of this model in future studies of de-
formation of the antiferroelectric helices and transitions
to ferrielectric phases.

Indium-tin-oxide—coated glass slides were spin coated
with a polyimide, baked, and then rubbed unidirectional-
ly to promote planar alignment. In order to assess the
importance of the surfaces, several cells were assembled
using Mylar spacers; the thicknesses were determined to
be d=24, 49, 78, and 99 um (all =1 um) using a high pre-
cision micrometer. The cells were filled in the isotropic
phase with the liquid-crystal mixture SCE12, which was
obtained from Merck and used without further
purification. Excellent planar alignment was achieved on
cooling from the nearly pitch-compensated cholesteric
phase into the smectic- 4 (Sm- A4) phase, as determined by
polarizing optical microscopy. Further cooling into the
Sm-C* phase resulted in a regular array of light and dark
stripes, corresponding to a uniform helical axis parallel to
the rubbing direction, i.e., the 2 axis. The cell was then
placed into another oven, which was temperature con-
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trolled to approximately 20 mK, and stabilized at 62.3 °C,
approximately 4.1°C below the Sm-A4-Sm-C* phase
transition temperature Ty o +«=66.4°C. The oven
was in turn placed between a pair of crossed polarizers,
the first rotated by Q=22.5° with respect to the 2 axis.
Light from a He-Ne laser passed sequentially through the
polarizer, the sample cell, the analyzer, and into a fast
photodiode detector. This configuration corresponds to
the classic “electroclinic geometry,” which is ordinarily
used to measure the polar tilt angle of the director as a
function of applied electric field on approaching the Sm-
A-Sm-C* transition from above [23]. The cell was
driven with a sinusoidal ac voltage V at frequency f,
which was ramped from O to 35 mV rms over 120 s. The
detector signal was input simultaneously into a dc volt-
meter so as to measure I, and into a lock-in amplifier
referenced to the driving voltage in order to measure /.
Since the applied field is weak, I is effectively constant.
In Fig. 1 we show a typical scan of the quantity I, /41,
vs V, where we clearly see that the component of signal at
frequency f is linear in the driving voltage.

In the classic electroclinic experiment above
T 4_sm.c*> the electric field E induces a polar tilt 6 of

the director, such that the director lies in a plane perpen-
dicular to E [24]. For sufficiently small 6, it can be
shown for our experimental geometry that the electro-
clinic response above Ty o .« would be 6=1, /4]
[23]. Thus in an electroclinic experiment d6/dE would
be given by (1/414.)dI,./dE. Motivated by this expres-
sion, we obtain an analogous quantity for our measure-
ments in the Sm-C* phase. In Fig. 2 we show the quanti-
ty (1/414.)dl,./dE, which we define as d{(0.4) /dE, as a
function of frequency f for the sample of thickness d=78
pm. The inset displays the same data as a log-log plot,
and the solid line is a fitted model to be discussed below.
The quantity { ,4) is clearly not the polar tilt angle—the
polar tilt 6=(11%+0.5)° everywhere in the sample at
T 4 smc* —4°C [25]—but instead represents an ap-
propriate spatially averaged (denoted by ¢ )) and opti-
cally averaged projection of the director in the plane of
the cell. We note that if 0 is sufficiently small (which is
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FIG. 1. (1/414)/dl,. /dE vs applied rms voltage at 1.019
kHz for the 78-um sample.
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FIG. 2. d{6.)/dE vs frequency for the 78-um cell. Solid
line represents the model prediction based upon appropriate
physical parameters. Inset: Log-log plot of same data.

the case here as we are only a few °Cbelow T, o «),

the quantity 0,4(z) can be physically associated with an
optical projection of the director into the cell plane, i.e.,
the projection of the polar tilt. For larger 6 this interpre-
tation breaks down. For example, if the director’s azimu-
thal orientation @(z) were /2 or 3w/2, such that the
director’s tilt phase were perpendicular to the plane of
the cell, then 6.4(z) would be zero. On the other hand, if
@(z) were O or m, such that the tilt plane lies in the plane
of the cell, then O.{z) would be maximum, i.e.,
O.(z)=11°. (6.4) is simply the spatial average of 6 4(z)
over the illuminated region. Figure 3 shows a log-log
plot of d{0.)/dE vs frequency for the four different
thickness cells. The four sets of data are in reasonable
agreement over two decades of f, generally within about
+15% of some average value at a given frequency. We
do not believe that these differences are significant, as a
given sample (d=99 pm) was observed to exhibit this
sort of variation for several experimental runs. We there-
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FIG. 3. d{60.) /dE vs frequency for the four different cells.
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fore conclude that for these thicknesses, at least, surface
effects are not important.

To model the experimentally observed voltage- and
frequency-dependent response, we take as our starting
point the free-energy density F for a Sm-C* liquid crystal
[22]
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2

99 _
oz 9

- S—ITT—AeEzsinZG sinp , (1)

where I is the moment of inertia, K is an effective twist
elastic constant for molecules having a polar tilt angle 6,
Ac is the dielectric anisotropy, and g the wave vector of
the helical pitch. Note that the * refers to the stability
of either the =0 (—) or the ¢=180° (+) solution. In-
troducing a damping term and using a variational tech-
nique we obtain the equation of motion:

~—9+K——‘B+pE i
n ot =1 ar2 sing

+ EAEE %5in?@ sing cosg , 2)

where 7] is the viscosity associated with azimuthal motion
of the director. As the inertial term is important only for
time scales of order I/1~4X 10! s or faster, it will be
dropped from the numerical computations [18]. Thus,
we shall use a slightly simplified version of Eq. (2) for our
analysis:

n%‘tB Ka—g:tPE sing+ ZI;_—AEEzsinZG sinpcosgp .  (3)
For purposes of integration, we chose the following
known values for the parameters at temperature
T=T, «—4°C: 6=11° and P=14.6 esucm ’
m- A -Sm-C

(Ref. [25]). Additionally, we chose Ae= —1.1 by interpo-
lating between data in the Sm-A4 phase [26] and the
manufacturer’s specifications at 20°C. We also chose
K =108 dyn, a value typical of Sm-C and Sm-C* ma-
terials tilted by a small angle [25-29]. Note that the
model results turned out to be relatively insensitive to the
values of K and, especially, Ae. Finally, we treated the
viscosity  as an unknown, and attempted to achieve a
best fit to the data.

The nonlinear partial differential equation [Eq. (3)] was
solved numerically by using the ‘Crank-Nicholson”
differencing scheme [30], similar to the approach of Ma-
clennan, Handschy, and Clark [18]. This is a fully impli-
cit scheme with second-order accuracy in time. It yields
the discrete equation

=K
At (Az)?
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which was solved for the next time step by inverting an
N XN tridiagonal matrix, where N is the number of
discrete spatial points. The upper indices in Eq. (4)

represent the time step and the lower indices represent
the spatial position.

Given our choice of sign (—PE singj}) in Eq. (4), 9=0
is a fixed point (P > parallel to E) and @=m is metastable
(P antiparallel to E). Thus it is clear that, for small fluc-
tuations of @ about its equilibrium, each half pitch of the
liquid crystal can be considered independently. From po-
larized optical microscopy we determined the pitch
27/q =14.68+0.1 pm for the 78-um sample, where it
was found that the modeling results did not depend
strongly on this value. (The pitches for the other samples
were. 17.1410.1 um for the d=24 um sample, 15.14+0.1
pm for the d=49 pum sample, and 14.2910.1 um for the
d=99 um sample. The increase in pitch with decreasing
sample thickness is due to anchoring effects at the boun-
daries that tend to unwind the helix. As is the case with
an electric field [31,32] the pitch increases when the helix
is unwound.) We used N=200 numerical points over a
half pitch, corresponding to a mesh Az =7 /gN=0.0367
pm. This yielded a very good representation of the direc-
tor orientation without numerical instability. The initial
condition was chosen to be ¢ =gz, corresponding to the
E=0 equilibrium orientation, while the ends of the half-
pitch region were pinned at ¢ =0 and 1, respectively [18].

The response of the director was examined as a func-
tion of E and f. It was found that dividing the period
7(=1/2mf) of the electric field into 500 equal time steps,
i.e., At =7/500, inhibited numerical instability. From
the discrete profile ¢(z,¢) we calculated the expected opti-
cal response d{0.)/dE=(1/41,.)dI,./dE. Computa-
tions starting from Maxwell’s equations yield the intensi-
ty ratio T (Ref. [18])

(n,—n, )77'd

T =sin*{2[Q —tan™ '(tanfcose)]}sin’ v

(5)

where T is the ratio of the local transmitted to incident
light intensity. Note that because @=g¢l(z,¢), T also
varies periodically with both position and time. For cal-
culational purposes we have used the experimental polar-
izer orientation 1=22.5°, the extraordinary refractive in-
dex n,=1.671, and the ordinary index n,=1.491 (Ref.
[25]). Additionally, ¢ is the speed of light in vacuum.
This formula for T neglects reflections at the air-glass in-
terfaces and also assumes that n, =~n, =n,,, thus ignor-
ing some of the more complicated thickness-dependent
effects such as internal reflections. The spatial average
(T) was computed by averaging T(g(z)) over the 200
spatial points. The dc intensity I, is therefore propor-
tional to the time average of {T') over one period of the
applied voltage, and was found to be constant in V. Like-
wise, the ac intensity I, is proportional to the rms ampli-
tude of the ac component of (7). (Because the driving
field is weak, the higher harmonics are vanishingly small,
and only the component at frequency f survives.) From
the calculated values I,, and I, we extracted
d(0.) /dE.

The numerical procedure was applied for several
values of 1 for the d=78 um sample, where a best fit was



obtained for 7=0.055 P; this is shown by the solid line in
Fig. 2 and the inset. We note that this value of viscosity
is of the same order as the value 7=0.037 P obtained at
the same reduced temperature in SCE12 for a bendlike
mode [25], and is sensitive numerically to variations in
the polar tilt angle 6. Although the fit is not perfect, it is
nevertheless in very good agreement both quantitatively
and qualitatively with the experimental results. The
small difference in apparent slopes seen in the log-log plot
of Fig. 2 may come from a number of different sources,
but most likely comes from small but non-negligible sur-
face effects and approximations in the optics leading to
Eq. (5). The results, both experimental and numerical,
clearly show that the response of this linear electro-optic
effect falls off more slowly with frequency than, for exam-
ple, a Lorentzian. This is due largely to the convolution
of the director dynamics [33] and optical properties of
the liquid crystal [18]. Interestingly, over two decades of
frequency, the optical response, both experimental and
theoretical, scales approximately as f ~!. (The results re-
ported in Ref. [15] deviate strongly from this behavior
over the same frequency range.) Additionally, as expect-
ed the optical response scales as 1. Although the equa-
tions are formally valid at higher voltages—indeed, they
hold even for the case of a completely unwound helix—
the boundary conditions are not. At higher applied fields
close to E,;, the pitch begins to change, an effect not ac-
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counted for in our simple model. Nevertheless, one could
in principle use this formalism to study the optical
response of a helix that is nearly unwound in an external
field. Additionally, we note that ¢ varies in space with a
soliton-lattice-like behavior at large E [22,34] in which
the lattice points are pinned at the stable and metastable
points, i.e., the half pitch points. For sufficiently large
field these points may become unstable, propagate, and
merge, yielding a net increase in pitch with E. Finally,
we point out that neither the results nor the experiment
requires a small polar angle 8. Experimentally we mea-
sured an ac and a dc response, and theoretically we calcu-
lated its ratio. Only if we wish to physically associate the
ratio with an effective angle { 6.;) must 0 be small.

To summarize, we have experimentally investigated the
frequency response of a linear electro-optic effect associ-
ated with the perturbation of the helical structure of a
Sm-C* liquid crystal. We have successfully modeled our
results, finding that the response falls off more slowly
with frequency than a simple Lorentzian line shape. This
formalism can be adapted to nearly complete unwinding
of the Sm-C* phase, and can be used to study the dynam-
ics of the antiferromagnetic double helix in external
fields.
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